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AFNI Soup to Nuts:
How to Analyze Data with AFNI from Start to Finish

• There is no single “correct” way to analyze fMRI data.  The path your data takes will
depend on the quality of the data, the complexity of the experiment, and the needs of the
researcher.
 However, there are some typical processing steps that are widely used.  These steps

are introduced and discussed in this handout.
 All processing steps will be done with AFNI (hence, AFNI “soup to nuts”).
 The sample study used for this hands-on is a real study, although the variable names

have been slightly modified.
•  afni_proc.py

 The data processing script discussed in this handout was generated by a program in
AFNI called afni_proc.py.

 Specifically, afni_proc.py is a python script that can generate a single-subject
data analysis script by asking the user to provide information regarding their study,
such as input datasets and stimulus files that will be used.  The program also asks for
more specific information, such as the number of TRs to be removed (if any), the EPI
volume that will be used to align the remaining volumes, and additional information
necessary for the regression or deconvolution analysis that will follow.
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 At the moment, this information is input via a command-line interface, or with an
optional question/answer session (afni_proc.py -ask_me).  Eventually, a GUI
will become available (but not yet).

 Once afni_proc.py has all the necessary information, it produces a tcsh (T-shell)
script that contains all the data processing steps.  This script can be easily executed
and the end result will be a functional/statistical dataset, as well as numerous datasets
produced from the intermediary steps.

• Before we go any further, start the processing script :
 we will discuss it more, soon
 under AFNI_data4, execute the script containing the afni_proc.py command

 this will create the processing script, proc.sb23.blk
 execute the proc.sb23.blk script, as recommended by afni_proc.py

 takes ~4 minutes on my laptop

cd AFNI_data4

tcsh s1.afni_proc.block

tcsh -x proc.sb23.blk |& tee output.proc.sb23.blk



-3-

• The Experiment :

 Cognitive Task: Subjects see photographs of two people interacting.
 The mode of communication falls in one of 3 categories: via telephone, email, or

face-to-face.
 The affect portrayed is either negative, positive, or neutral in nature.

 Experimental Design: 3x3 Factorial design, BLOCKED trials
 Factor A: CATEGORY - (1) Telephone, (2) E-mail, (3) Face-to-Face
 Factor B: AFFECT - (1) Negative, (2) Positive, (3) Neutral

 A random 30-second block of photographs for a task (ON), followed by a 30-
second block of the control condition of scrambled photographs (OFF), and so on.

 Each run has 3 ON blocks, 3 OFF blocks.  There are 9 runs in a scanning session.
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“You are the best
project leader!”

“You finished the
project.”

“Your project is lame,
just like you!”

"Your new
haircut looks

awesome!"

"You got a
haircut."

"Ugh, your hair
is hideous!"

“I feel lucky to have
you in my life.”

“I know who you
are.”

“I curse the day I met
you!”
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 Illustration of Stimulus Conditions:

 Data Collected:
  1 Anatomical (MPRAGE) dataset for each subject

• 124 axial slices
• voxel dimensions = 0.938 x 0.938 x 1.2 mm

  9 Time Series (EPI) datasets for each subject
•  34 axial slices x 67 volumes = 2278 slices per run
•  TR = 3 sec; voxel dimensions = 3.75 x 3.75 x 3.5 mm

  Sample size, n=16 (all right handed)
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• Analysis Steps:
  Part I: Process data for each individual subject (using afni_proc.py)

 Pre-process subjects’ data ⇒ many steps involved here…
 Run regression analysis on each subject’s data --- 3dDeconvolve

  Part II: Run group analysis
 warp results to standard space
 3-way Analysis of Variance (ANOVA) --- 3dANOVA3

• Category (3) x Affect (3) x Subjects (16)  =>  3-way ANOVA

• Class work for Part I:

 view the original data by running afni from the subject sb23/ directory
 then view output data from the sb23.blk.results/ directory

cd AFNI_data4/sb23

ls

afni &
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• Back to afni_proc.py :
 For our class example, we can take a look at the afni_proc.py command we’ve

written up already and saved as an executable script called
s1.afni_proc.block (perhaps viewing in a different terminal window)

cd AFNI_data4
gedit  s1.afni_proc.block

• note: gedit is a text editor (can also use nedit, emacs or vi)
afni_proc.py                                                \
        -subj_id sb23.blk                                   \
        -dsets sb23/epi_r??+orig.HEAD                       \
        -copy_anat sb23/sb23_mpra+orig                      \
        -tcat_remove_first_trs 3                            \
        -volreg_align_to last                               \
        -regress_make_ideal_sum sum_ideal.1D                \
        -regress_stim_times sb23/stim_files/blk_times.*.1D  \
        -regress_stim_labels tneg tpos tneu eneg epos       \
                             eneu fneg fpos fneu            \
        -regress_basis 'BLOCK(30,1)'                        \
        -regress_opts_3dD                                   \
            -gltsym 'SYM: +eneg -fneg'                      \
            -glt_label 1 eneg_vs_fneg                       \
            -gltsym 'SYM: 0.5*fneg 0.5*fpos -1.0*fneu'      \
            -glt_label 2 face_contrast                      \
            -gltsym ‘SYM: tpos epos fpos -tneg -eneg -fneg’ \
            -glt_label 3 pos_vs_neg
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 Line-by-Line Explanation of s1.afni_proc.block command:

 -subj_id: Specify a subject ID name for the processing script that will be
created by executing the s1.afni_proc.block script. The ID in
this example is sb23.blk

 -dsets : Specify the name of the time series datasets that will be analyzed, as
well as the directory path in which they reside.  Here, they are called
epi_r03+orig .. epi_r11+orig, residing in directory sb23/
(note that .HEAD is required for wildcard matching)

 -copy_anat: This option will take the anatomical dataset sb23_mpra+orig
that currently resides in sb23/ and copy it into the results directory
(the results directory will be created once the processing script has
been run)

 tcat_remove_first_trs: This option removes ‘x’ number of timepoints
from the beginning of each time series run.  Here, we have chosen
to remove the first 3 timepoints from each run

 -volreg_align_to: This volume registration option asks the user to choose
which volume will be the base by which all other volumes in the time
series runs are aligned.  Here we have chosen the last volume
from the last epi run (run 9)

 -regress_make_ideal_sum: Sums the ideal response curves from the
regressors and saves as a 1D file, e.g., sum_ideal.1D

 -regress_stim_times: Specifies the name and location of the stimulus
timing files for our experiment.  In this example, they are 
sb23/stim_files/blk_times.*.1D
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 Line-by-Line Explanation of s1.afni_proc.block command (cont…)

 -regress_stim_labels: Specifies the names of our 9 regressors: tneg,
tpos, tneu, eneg, epos, eneu, fneg, fpos, and fneu

 -regress_basis: Specifies the regression basis function to be used by
3dDeconvolve in the regression step.  In this example, we have
'BLOCK(30,1)’, which is a 30-second BLOCK response function
(with a peak of 1).

 -regress_opts_3dD: Allows for additonal 3dDeconvolve options, such as
general linear tests (glt’s)

 We have previously executed the afni_proc.py script, s1.afni_proc.block.

(already done) tcsh s1.afni_proc.block

 The result is an auto-generated processing script called proc.sb23.blk.  Use a
text editor like gedit, nedit, emacs, or vi to open and view this new script:

gedit proc.sb23.blk

 You will notice that script proc.sb23.blk includes multiple processing steps for
the data, including volume registration, blurring, data scaling, and much more.
Each step is run by an AFNI program.  The next section (Part I) will go over each
processing step in detail.
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• PART I ⇒ Process Data for each Individual Subject:
 Hands-on example: Subject sb23
 Data Processing Script created by afni_proc.py program: proc.sb23.blk
 We will begin with sb23’s anatomical dataset and 9 time-series (3D+time) datasets:
sb23_mpra+orig, sb23_mpra+tlrc, epi_r03orig, ED_r04+orig …
epi_r11+orig

 Below is sb23_r03+orig (3D+time) dataset.  Notice the first few time points of the
time series have relatively high intensities*.  We will need to remove them later:

First 2-3
timepoints
have higher
intensity
values

✽  Images obtained during the first 4-6 seconds of scanning will have much larger intensities
than images in the rest of the timeseries, when magnetization (and therefore intensity) has
decreased to its steady state value
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• Pre-processing is done by the proc.sb23.blk script within the directory,
AFNI_data4/sb23.blk.results/.
 open the proc.sb23.blk script in an editor (such as gedit), and follow the

script while viewing the results
 also, go to the sb23.blk.results directory to start viewing the results
 starting from the sb23/ directory (from the previous slides)…

cd ..
gedit proc.sb23.blk &
cd sb23.blk.results
ls
afni &

 note that in the script, the count command is used to set the $runs variable
as a list of run indices:

• set runs = ( `count -digits 2 1 9` )
becomes (by the shell quietly executing the count command):

• set runs = ( 01 02 03 04 05 06 07 08 09 )
 And so:

• foreach run ( $runs )
becomes (when the shell expands the $runs variable):

• foreach run ( 01 02 03 04 05 06 07 08 09 )
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•  STEP 0 (tcat): Apply 3dTcat to copy datasets into the results directory,
while removing the first 3 TRs from each run.

 The first 3 TRs from each run occurred before the scanner reached a steady state.

3dTcat -prefix $output_dir/pb00.$subj.r01.tcat   \
sb23/sb23_r03+orig'[3..$]'

 The output datasets are placed into $output_dir, which is the results directory.
 Using sub-brick selector '[3..$]' sub-bricks 0, 1, and 2 will be skipped.

 The '$' character denotes the last sub-brick.
 The single quotes prevent the shell from interpreting the '[' and '$' characters.

 The output dataset name format is:

pb00.$subj.r01.tcat (.HEAD / .BRICK)

 pb00 : process block 00
 $subj : the subject ID (sb23, in this case)
 r01 : EPI data from run 1
 tcat : the name of this processing block (according to afni_proc.py)

  (other block names are tshift, volreg, blur, mask, scale, regress)
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•  STEP 1 (tshift): Check for possible “outliers” in each of the 9 time series
datasets using 3dToutcount .  Then perform temporal alignment using
3dTshift.

 An outlier is usually seen as an isolated spike in the data, which may be due to a
number of factors, such as subject head motion or scanner irregularities.

 The outlier is not a true signal that results from presentation of a stimulus event, but
rather, an artifact from something else -- it is noise.

foreach run (01 02 03 04 05 06 07 08 09)
    3dToutcount -automask pb00.$subj.r$run.tcat+orig  \

     > outcount_r$run.1D
end

 How does this program work? For each time series, the trend and Median Absolute
Deviation are calculated.  Points far away from the trend are considered outliers.
 "far away" is defined as at least 5.219*MAD (for a time series of 64 TRs)

•  see 3dToutcount -help for specifics
  -automask: does the outlier check only on voxels within the brain and ignores

background voxels (which are detected by the program because of their smaller
intensity values)

  > : redirects output to the text file outcount_r01.1D (for example), instead of
sending it to the terminal window.
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 Subject sb23’s outlier files:
outcount_r01.1D
outcount_r02.1D
     …

  outcount_r09.1D

 Use AFNI 1dplot to display any one of ED’s outlier files.  For example:
1dplot outcount_r08.1D

Note: “1D” is used to identify a
numerical text file.  In this case, each
file consists a column of 64 numbers
(b/c of 64 time points).

High intensity values
in the beginning are
usually due to
scanner attempting
to reach steady
state.

Outliers?
Inspect the data.

Time

Number of
‘outlier’ voxels,

per TR
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 in afni, view run 01, time points 38, 39 and 40
 while it appears that something happened at time point 39 - such as a swallow,

sneeze, or similar movement - it may not be enough to worry about
 if there had been a more significant problem, and if it could not be fixed by
3dvolreg, then it might be good to censor this time point via the -censor option
in 3dDeconvolve

internal movement can
be seen in this area,
using afni

Big spike at
timepoint 39
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• Next, perform temporal alignment using 3dTshift.
 Slices were acquired in an interleaved manner (slice 0, 2, 4, …, 1, 3, 5, …).
 Interpolate each voxel's time series onto a new time grid, as if each entire

volume had been acquired at the beginning of the TR (TR=3 seconds in this
example)
 For example, slice #0 was acquired at times t = 0, 3, 6, 9, etc., in seconds.

However, slice #1 was acquired at times t = 1.5, 4.5, 7.5, 10.5, etc., which
is asynchronous with the TR.

 After applying 3dTshift, all slices will have offset times of t = 0, 3, 6, etc.

    3dTshift -tzero 0 -quintic                \
             -prefix pb01.$subj.r$run.tshift  \
             pb00.$subj.r$run.tcat+orig

 -tzero 0  :  the offset for each slice is set to the beginning of the TR
 -quintic  :  interpolate using a 5th degree polynomial
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 Subject sb23’s newly created time shifted datasets:
   pb01.sb23.blk.r01.tshift+orig (.HEAD/.BRIK)
     ...

   pb01.sb23.blk.r09.tshift+orig (.HEAD/.BRIK)

 Below is run 01 of sb23’s time shifted dataset.

Slice acquisition now
in synchrony with
beginning of TR
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•  STEP 2: Register the volumes in each 3D+time dataset using AFNI
program 3dvolreg.
 All volumes will be registered to the last volume of the last run (i.e., run 9,

volume 63).  This volume is closest in proximity to the anatomical dataset.

foreach run ( $runs )
3dvolreg  -verbose -zpad 1                       \
          -base pb01.$subj.r09.tshift+orig'[63]' \
          -1Dfile dfile.r$run.1D                 \
          -prefix pb02.$subj.r$run.volreg        \
          pb01.$subj.r$run.tshift+orig

end

cat dfile.r??.1D > dfile.rall.1D

 -verbose : prints out progress report onto screen
 -zpad  : add one temporary zero slice on either end of volume
 -base   : align to last volume, since anatomy was scanned after EPI
 -1Dfile : save motion parameters for each run (roll, pitch, yaw, dS, dL, dP)

   into a file containing 6 ASCII formatted columns
 -prefix  : output dataset names reflect processing step 2 (volreg)
 input datasets are from processing step 1 (tshift)
 concatenate the motion parameters (dfiles) from all 9 runs into one file
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 Subject sb23’s 9 newly created volume registered datasets:
pb02.sb23.blk.r01.volreg+orig (.HEAD/.BRIK)
    ...
pb02.sb23.blk.r10.volreg+orig (.HEAD/.BRIK)

 Below is run 01 of sb23’s volume registered datasets.
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 view the registration parameters in the text file, dfile.rall.1D
 this is the concatenation of the registration files for all 9 runs

1dplot -volreg dfile.rall.1D

 Slight movements going on here, especially at the “Pitch” angle
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•  STEP 3: Apply a Gaussian filter to spatially blur the volumes using
program 3dmerge.

 result is somewhat cleaner, more contiguous activation blobs
 also helps account for subject variability when warping to standard space
 spatial blurring will be done on sb23’s time shifted, volume registered datasets

foreach run ( $runs )
      3dmerge -1blur_fwhm 4.0  -doall         \
              -prefix pb03.$subj.r$run.blur   \
              pb02.$subj.r$run.volreg+orig
end

 -1blur_fwhm 4: use a full width half max of 4mm for the filter size
 -doall       : apply the editing option (in this case the Gaussian

filter) to all sub-bricks in each dataset
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Before blurring

After blurring

 results from 3dmerge:

pb02.sb23.blk.r01.volreg+orig

pb03.sb23.blk.r01.blur+orig
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•  STEP 3.5 : creating a union mask

 use 3dAutomask to create a 'brain' mask for each run
 create a mask which is the union of the run masks (since we need only one

main mask; not 9 individual masks from each run)
 this mask can be applied in various ways:

1. During the scaling operation
2. In 3dDeconvolve (so that time is not wasted on background voxels)
3. To group data, in standard space

• may want to use the intersection of all subject masks

foreach run ( $runs )
    3dAutomask -dilate 1 -prefix rm.mask_r$run \

           pb03.$subj.r$run.blur+orig
end

 -dilate 1 : dilate the mask by one voxel (just to ensure that none of the
voxels along the perimeter of the brain get accidently clipped away and
excluded from the mask).
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 next, take the union of the run masks
 the mask datasets have values of 0 and 1
 can take union by computing the mean and comparing to 0.0

• other methods exist, but this is done in just two simple commands

3dMean -datum short -prefix rm.mean  rm.mask*.HEAD

3dcalc -a rm.mean+orig -expr 'ispositive(a-0)'     \
       -prefix full_mask.$subj

 -datum short : force full_mask to be of type short
 rm.* files     : these files will be removed later in the script

 -a rm.mean+orig : specify the dataset used for any 'a' in '-expr'
 -expr 'ispositive(a-0)': evaluates to 1 whenever 'a' is positive

• note that the comparison to 0 can be changed
0.99 would create an intersection mask
0.49 would mean at least half of the masks are set
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 so the result is dataset, full_mask.sb23.blk+orig
 view this in afni

 load pb03.ED.8.glt.r01.blur+orig as the Underlay
 load the full_mask.sb23.blk+orig dataset as the Overlay
 set the color overlay opacity to 5

• allows the underlay to show through the overlay

color overlay
opacity buttons
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•  STEP 4: Scaling the Data - as percent of the mean

 For each run,
 for each voxel:

• compute the mean value of the time series
• scale the time series so that the new mean is 100

 Scaling becomes an important issue when comparing data across subjects:
 using only one scanner, shimming affects the magnetization differently for

each subject (and therefore affects the data differently for each subject)
 different scanners might produce vastly different EPI signal values

 Without scaling, the magnitude of the beta weights may have meaning only when
compared with other beta weights in the dataset
 Example, what does a beta weight of 4.7 mean?  Basically nothing, by itself.

• It is a small response, if many voxels have responses in the hundreds.
• It is a large response, if it is a percentage of the mean.

 By converting to percent change, we can compare the activation calibrated with
the relative change of signal, instead of the arbitrary baseline of FMRI signal
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 Another example:
Subject 1 - signal in hippocampus has a mean of 1000, and goes from 
a baseline of 990 to a response at 1040

Difference = 50 MRI units

Subject 2 - signal in hippocampus has a mean of 500, and goes from a 
baseline of 500 to a response at 525

Difference = 25 MRI units

 Conclusion: each shows a 5% change, relative to the mean.
 these changes are 5% above the baseline
 But 5% of what?  It is 5% of the mean.

 Percent of baseline might be a slightly preferable scale (to percent of mean), but it
may not be worth the price.
 the difference is only a fraction of the result

• e.g. a 5% change from the mean would be approximately a 5.1% change
from the baseline, if the mean is 2% above the baseline

 computing the baseline accurately is confounded by using motion parameters
(but using motion parameters may be considered more important)
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 Scale the Data:

foreach run ( $runs )
    3dTstat -prefix rm.mean_r$run pb03.$subj.r$run.blur+orig

    3dcalc -a pb03.$subj.r$run.blur_orig -b rm.mean_r$run+orig \
           -c full_mask.$subj+orig                             \
           -expr 'c * min(200, a/b*100)'                       \
           -prefix pb04.$subj.r$run.scale
end

 dataset a : the blurred EPI  time series (for a single run)
 dataset b : a single sub-brick, where each voxel has the mean value for that run
 dataset c : the full mask

 -expr 'c * min(200, a/b*100)'
 compute a/b*100  (the EPI value 'a', as a percent of the mean 'b')
 if that value is greater than 200, use 200
 multiply by the mask value, which is 1 inside the mask, and 0 outside
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 Compare EPI graphs from before and after scaling
 they look identical, except for the scaling of the values
 the EPI run 01 mean for the center voxel is 3840.969 in the blur dataset

(so, dividing by 38.40969 gives the scaled value for this voxel)

right-click in the
center voxel of

the graph window for
data stats

pb03.ED.glt.r01.blur+orig pb04.ED.glt.r01.scale+orig
Before Scaling After Scaling
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 compare EPI images from before and after scaling
 the background voxels are all 0, because of applying the mask
 the scaled image looks like a mask, because all values are either 0, or

are close to 100

pb03.sb23.blk.r01.blur+orig pb04.sb23.blk.r01.scale+orig

Before Scaling After Scaling



-30-

•  STEP 5: Perform a regression analysis on Subject sb23’s data 
     with 3dDeconvolve.

 What is the difference between regular linear regression and deconvolution?
 With linear regression, the hemodynamic response is assumed.
 With deconvolution, the hemodynamic response is not assumed.  Instead, it is

computed by 3dDeconvolve from the data.
• For this dataset, we will go with the linear regression option in
3dDeconvolve.

 BLOCK(30,1) was the response model chosen for this analysis.  Why?
 BLOCK: The design of this experiment is BLOCK, i.e., there are blocked

intervals of stimulus presentations (ON), followed by blocked intervals of the
control condition (OFF).  This design differs from event-related, where
experimental stimuli and controls are presented randomly throughout the
experiment.

 30: Each block lasts 30 seconds
 1: The response function will have a peak of 1
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• 3dDeconvolve command - Part 1

3dDeconvolve -input pb04.$subj.r??.scale+orig.HEAD          \
  -polort 2                                                 \
  -mask full_mask.$subj+orig                                \
  -num_stimts 15                                            \

  see input dataset list by typing:  echo pb04.$subj.r??.scale+orig.HEAD
 note that there should be 9 such datasets, for the 9 runs
 the .HEAD suffix is necessary to do the wildcard expansion with '??'

  -mask: Use mask to avoid computation on zero-valued time series
  -num_stimts 15: 9 regressors + 6 motion parameters = 15 input stimulus time

series
 the 9 regressors of interests are given as timing files, via -stim_times
 the 9 motion parameters are given as actual regressors, via -stim_file

9 input datasets

Continued on next page…
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• 3dDeconvolve command - Part 2

-stim_times 1 stimuli/blk_times.01.tneg.1D 'BLOCK(30,1)'  \
-stim_label 1 tneg                                        \
-stim_times 2 stimuli/blk_times.02.tpos.1D ’BLOCK(30,1)'  \
-stim_label 2 tpos                                        \
-stim_times 3 stimuli/blk_times.03.tneu.1D ’BLOCK(30,1)'  \
-stim_label 3 tneu                                        \
-stim_times 4 stimuli/blk_times.04.eneg.1D ’BLOCK(30,1)'  \
-stim_label 4 eneg                                        \
-stim_times 5 stimuli/blk_times.05.epos.1D 'BLOCK(30,1)'  \
-stim_label 5 epos                                        \
-stim_times 6 stimuli/blk_times.06.eneu.1D ’BLOCK(30,1)'  \
-stim_label 6 eneu                                        \
-stim_times 7 stimuli/blk_times.07.fpos.1D ’BLOCK(30,1)'  \
-stim_label 7 fpos                                        \
-stim_times 8 stimuli/blk_times.08.fneg.1D ’BLOCK(30,1)'  \
-stim_label 8 fneg      \
-stim_times 9 stimuli/blk_times.09.fneu.1D ’BLOCK(30,1)'  \
-stim_label 9 fneu \

  -stim_times: Our 9 regressors of interest are given using -stim_times option
Continued on next page…
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• 3dDeconvolve command - Part 3

-stim_file  10 dfile.rall.1D'[0]' -stim_base 10 \
-stim_label 10 roll   \

  -stim_file  11 dfile.rall.1D'[1]' -stim_base 11 \
-stim_label 11 pitch  \

  -stim_file  12 dfile.rall.1D'[2]' -stim_base 12 \
-stim_label 12 yaw    \
-stim_file  13 dfile.rall.1D'[3]' -stim_base 13 \
-stim_label 13 dS     \

  -stim_file  14 dfile.rall.1D'[4]' -stim_base 14 \
-stim_label 14 dL     \

  -stim_file  15 dfile.rall.1D'[5]' -stim_base 15 \
-stim_label 15 dP    \

 Recall that dfile.all.1D contains 6 [columns] of registration parameters
 roll [0], pitch [1], yaw [2], dS [3], dL [4], dP [5]

  -stim_base: Our 6 motion parameters are given using -stim_base to indicate
they are part of the baseline model (i.e., regressors of no interest), and will be
exclued from the Full-F statistic (which contains only the 9 regressors of interest).

Continued on next page…
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• 3dDeconvolve command - Part 4

  -gltsym 'SYM: +eneg -fneg'                               \
  -glt_label 1 eneg_vs_fneg                              \
  -gltsym 'SYM: 0.5*fneg 0.5*fpos -1.0*fneu'             \
  -glt_label 2 face_contrast                             \
  -gltsym 'SYM: tpos epos fpos -tneg -eneg -fneg'        \
  -glt_label 3 pos_vs_neg                                \
  -fout -tout -x1D X.xmat.x1D -xjpeg X.jpg                \
  -fitts fitts.$subj                                     \
  -bucket stats.$subj

 -gltsym: General linear tests are written out symbolically (and easily!) on the
command line, e.g., 'SYM: +eneg -fneg’, which replaces something like:

0 0 0 0 0 0 0 0 … 1 0 0 -1 0 0 0 0 0 … 0
  -fout, -tout: output F and t-stats for each test
  -x1D: output the X matrix in a 1D text file (with NIML header), X.xmat.1D
 -xjpeg: also output the X matrix as a JPEG image, X.jpg
  -fitts: output the time series of the model fit in fitts.sb23.blk+orig
  -bucket: output all beta weights, glts and statistics on them into on them into

one bucket dataset, stats.sb23.blk+orig

End of command
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• After running 3dDeconvolve, an 'all_runs' dataset is created by concatenating the 9
scaled EPI time series datasets, using program 3dTcat.

3dTcat -prefix all_runs.$subj pb04.$subj.r??.scale+orig.HEAD

 Now we can use the Double Plot graph feature to plot the all_runs dataset,
along with the fitts dataset, in the same graph window
 this shows how well we have modeled the data, at a given voxel location

• the fit time series is the sum of each regressor (X matrix column),
multiplied by its corresponding beta weight

• the fit time series is the same as the input time series, minus the error
 note that different locations in the brain respond better to some stimulus

classes than others, generally, so the fit time series may overlap better after
one type of stimulus than after another

 We will focus on voxel 22 43 12 (ijk), which has the largest F-stat in the
dataset
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• Let’s view some data:

UnderLay: all_runs.sb23.blk
OverLay: stats.sb23.blk (Full F-stat)
Voxel: Jump to (ijk) : 22 43 12

Graph:
Axial view, one voxel shown only (m) and
autoscaled (a).
Since we have 9 runs concatenated to create one
huge dataset with 576  volumes, let’s fix the grid so
that we can easily distinguish between the runs,
Opt --> Grid --> Choose: 64 (576/9=64)
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• Now plot the all_runs dataset along with the fitts dataset
 From the Graph window:

  Opt --> Tran 1D --> Dataset #N
• in the Dataset #N plugin, choose dataset fitts.sb23.blk+orig, and

choose color dk-blue (this will overlay the fitts dataset (in dark blue) over
our all_runs.sb23.blk+orig dataset (in black), and we can see how well
the data fits our model).
 Note: You can also get to Dataset #N plugin from the main plugins menu, located on

the AFNI GUI at Define Datamode --> Plugins --> Dataset #N
 Back to the Graph window, select Opt -> Double Plot -> Overlay
 In order to see the fitts overlay even better, let’s make the dark blue line thicker, by

selecting Opt --> Colors, Etc. --> Dplot: Use Thick Lines

Fairly good fit - some noise left over but nothing major.

r01 r02 r03 r04 r05 r06 r07 r08 r09
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 For each subject, we need only the 9       
beta weights of our stimulus 
conditions to perform the group 
analysis.  For our class example, the      
beta-weights are located in the following sub-bricks:

Sub-brick 1 - tneg Sub-brick 10 - eneg    Sub-brick 19 - fneg
Sub-brick 4 - tpos Sub-brick 13 - epos    Sub-brick 22 - fpos
Sub-brick 7 - tneu Sub-brick 16 - eneu    Sub-brick 25 - fneu

 AFNI 3dbucket will be used to create a beta-weight-only dataset for each of our
16 subjects.  Example for subject 23:

3dbucket -prefix stats.sb23.betas+orig       \
     stats.sb23.blk+orig’[1,4,7,10,13,16,19,22,25]’

•  STEP 6: Use 3dbucket to create a Dataset containing only the 9-beta
weights needed for the ANOVA
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 Result: One dataset for each of the 16 subjects, containing only the 9 sub-bricks of
regressors of interest.  These regressors will be used for the ANOVA.
 Datasets for our 16 subjects:

stats.sb04.betas+orig   stats.sb11.betas+orig   stats.sb19.betas+orig
stats.sb05.betas+orig   stats.sb14.betas+orig   stats.sb20.betas+orig
stats.sb07.betas+orig   stats.sb15.betas+orig   stats.sb21.betas+orig
stats.sb08.betas+orig   stats.sb16.betas+orig   stats.sb22.betas+orig
stats.sb09.betas+orig   stats.sb17.betas+orig   stats.sb23.betas+orig
stats.sb10.betas+orig   stats.sb18.betas+orig

stats.sb23.betas+orig
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•  STEP 7: Warp the beta datasets for each subject to Talairach space, by
applying the transformation in the anatomical datasets with adwarp.

 For statistical comparisons made across subjects, all datasets -- including
functional overlays -- should be standardized (e.g., Talairach format) to control
for variability in brain shape and size
 E.g., for subject sb23:

adwarp -apar sb23_mpra+tlrc  -dxyz 3   \
-dpar stats.sb23.betas+orig

 The output of adwarp will be a Talairach transformed dataset for all 16 subjects.
stats.sb04.betas+tlrc, stats.sb05.betas+tlrc …
stats.sb23.betas+tlrc

• We are now done with Part 1, Process Individual Subjects’ Data, for Subject
sb23
 go back and follow the same steps for remaining subjects

• We can now move on to Part 2, RUN GROUP ANALYSIS (ANOVA)
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• PART 2 ⇒  Run Group Analysis (ANOVA3):
 In our sample experiment, we have 3 factors (or Independent Variables) for the

Analysis of Variance:

 IV 1: CATEGORY ⇒  3 levels
telephone (T)
email (E)
Face-to-face (F)

 IV 2: AFFECT ⇒  3 levels
negative (neg)
positive (pos)
Neutral (neu)

 IV 3: SUBJECTS ⇒ 16 levels
        Subjects sb04, sb05, sb07, sb08, sb09, sb10, sb11, sb14 … sb23

 The Talairached beta datasets from each subject will be needed for the ANOVA:

       stats.sb04.betas+tlrc  … stats.sb23.betas+tlrc
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Continued on
next page…

beta datasets,
created for
each subject
(3dDeconvolv
e output)

IV A: Category
IV B: Affect

IV C: Subjects

• 3dANOVA3 Command - Part 1

3dANOVA3 -type 4     \

-alevels 3     \

-blevels 3     \

-clevels 16     \

-dset 1 1 1 stats.sb04.betas+tlrc'[0]' \

-dset 1 2 1 stats.sb04.betas+tlrc'[1]' \

-dset 1 3 1 stats.sb04.betas+tlrc'[2]' \

-dset 2 1 1 stats.sb04.betas+tlrc'[3]' \

-dset 2 2 1 stats.sb04.betas+tlrc'[4]' \

-dset 2 3 1 stats.sb04.betas+tlrc'[5]' \

-dset 3 1 1 stats.sb04.betas+tlrc'[6]' \

-dset 3 2 1 stats.sb04.betas+tlrc'[7]' \

-dset 3 3 1 stats.sb04.betas+tlrc'[8]' \

-dset 1 1 2 stats.sb05.betas+tlrc'[0]' \
-dset 1 2 2 stats.sb05.betas+tlrc'[1]' \ 
-dset 1 3 2 stats.sb05.betas+tlrc'[2]' \

IV’s A & B are fixed, C is random
See 3dANOVA3 -help
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• 3dANOVA3 Command - Part 2

-dset 2 1 2 stats.sb05.betas+tlrc'[3]' \

-dset 2 2 2 stats.sb05.betas+tlrc'[4]' \

-dset 2 3 2 stats.sb05.betas+tlrc'[5]' \

-dset 3 1 2 stats.sb05.betas+tlrc'[6]' \

-dset 3 2 2 stats.sb05.betas+tlrc'[7]' \

-dset 3 2 2 stats.sb05.betas+tlrc'[8]' \

    .  .  .

-dset 1 1 16 stats.sb23.betas+tlrc'[0]' \

-dset 1 2 16 stats.sb23.betas+tlrc'[1]' \

-dset 1 3 16 stats.sb23.betas+tlrc'[2]' \

-dset 2 1 16 stats.sb23.betas+tlrc'[3]' \

-dset 2 2 16 stats.sb23.betas+tlrc'[4]' \

-dset 2 3 16 stats.sb23.betas+tlrc'[5]' \

-dset 3 1 16 stats.sb23.betas+tlrc'[6]' \

-dset 3 2 16 stats.sb23.betas+tlrc'[7]' \

-dset 3 3 16 stats.sb23.betas+tlrc'[8]' \

Continued on
next page…

more
beta
datasets
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• 3dANOVA3 Command - Part 3

-fa Category \

-fb Affect \

-adiff 1 2 TvsE \

-bdiff 1 3 TvsF \

-bcontr 0.5 0.5 -1 non-neu \

-aBcontr 1 -1 0 : 1 TvsE-neg \

-aBcontr 1 -1 0 : 2 TvsE-pos \

-bucket anova33

End of ANOVA
command

Produces main effect for factor ‘a’
(Category), i.e., which voxels show
increases in % signal change that is
significantly different from zero?

Main effect for factor
‘b’,  (Affect)

All F-tests, t-tests,
etc will go into this
dataset bucket

These are
contrasts
(t-tests).
Explained on
pp 44-45
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 -adiff: Performs contrasts between levels of factor ‘a’ (or -bdiff for factor ‘b’,
-cdiff for factor ‘c’, etc), with no collapsing across levels of factor ‘a’.
  E.g.1,  Factor ‘a’ Category --> 3 levels: (1)Telephone, (2)Email, (3) Face-to-Face

-adiff 1 2 TvsE

-adiff 1 3 TvsF

-adiff 2 3 EvsF

 -acontr: Estimates contrasts among levels of factor ‘a’ (or -bcontr for factor
‘b’, -ccontr for factor ‘c’, etc). Allows for collapsing across levels of factor ‘a’
 E.g.1,  Factor ‘a’ Category --> 3 levels: (1)Telephone, (2)Email, (3) Face-to-Face

-acontr -1 .5 .5 EFvsT
-acontr .5 .5 -1 TEvsF

-acontr .5 -1 .5 TFvsE

Simple paired t-tests, no
collapsing across levels, like
Telephone/Email vs. Face-to-Face

Email/Face-to-Face vs. Telephone
Telephone/Email vs. Face-to-Face

Telephone/Face-to-Face vs. Email
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 -aBcontr: 2nd order contrast. Performs comparison between 2 levels of
factor ‘a’ at a Fixed level of factor ‘B’
 E.g. factor ‘a’ --> Telephone(1), Email(-1), Face-to-Face (0)

      factor ‘B’ --> Negative(1), Positive(2), Neutral (3)
• We want to compare ‘Negative Telephone’ vs. ‘Negative Email’.  Ignore
‘Positive’ and ‘Neutral’

-aBcontr 1 -1 0 : 1 TvsE_neg

• We want to compare “Positive Telephone’ vs. ‘Positive Email’. Ignore ‘Negative’
and ‘Neutral’

-aBcontr 1 -1 0: 2 TvsE_pos

 -Abcontr: 2nd order contrast. Performs comparison between 2 levels of
factor ‘b’ at a Fixed level of factor ‘A’
 E.g., factor ‘A’ --> Telephone(1), Email(2), Face-to-Face (3)

factor ‘b’ --> Negative(1), Positive(-1), Neutral (0)
• We want to compare ‘Negative Telephone’ vs. ‘Positive Telephone’.  Ignore
‘Email’ and ‘Face-to-Face’

-Abcontr 1 : 1 -1 0 Tneg_vs_Tpos

• We want to compare “Negative Email’ vs. ‘Positive Email’. Ignore ‘Telephone’
and ‘Face-to-Face’

-Abcontr 2 : 1 -1 0 Eneg_vs_Epos
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 In class -- Let’s run the ANOVA together:

  cd AFNI_data4
• This directory contains a script called s2.anova that will run
3dANOVA3

• This script can be viewed with a text editor, like emacs or gedit
  tcsh s2.anova

• execute the ANOVA script from the command line
  cd group_results ; ls

• result from ANOVA script is a bucket dataset anova33+tlrc, 
stored in the group_results/ directory

  afni &
• launch AFNI to view the results

 The output from 3dANOVA3 is bucket dataset anova33+tlrc, which
contains 35 sub-bricks of data:

• i.e., main effect F-tests for factors A and B, 1st order contrasts, and
2nd order contrasts
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 -fa: Produces a main effect for factor ‘a’
• In this example, -fa determines which voxels show a percent signal

change that is significantly different from zero when any level of factor
“Category” is presented

•  -fa Category:

Activated areas respond
to CATEGORY  in
general (i.e., telephone,
email, and/or face-to-
face)

ULay: sb23_mpra+tlrc
OLay: anova33+tlrc
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 Brain areas corresponding to “Telephone” (reds) vs. “Face-to-Face” (blues)
  -diff 1 2 TvsF

Red blobs show
statistically significant
percent signal changes
in response to
“Telephone.” Blue blobs
show significant percent
signal changes in
response to “Face-to-
Face” displays

ULay: sb23_mpra+tlrc
OLay: anova33+tlrc
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 Brain areas corresponding to “Positive Telephone” (reds) vs. “Positive Email” (blues)
  -aBcontr 1 -1 0: 2 TvsE-pos

Red blobs show
statistically significant
percent signal changes
in response to “Positive
Telephone.” Blue blobs
show significant percent
signal changes in
response to “Positive
Email” displays

ULay: sb23_mpra+tlrc
OLay: anova33+tlrc
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• Many thanks to NIMH LBC for donating the data used in this lecture

• For more information on AFNI ANOVA programs, visit the web page of
Gang Chen, our wise and infinitely patient statistician:

http//afni.nimh.gov/sscc/gangc


